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Abstract 
An improved technique for 3D head tracking under 

varying illumination conditions is proposed. The head is 
modeled as a texture mapped cylinder. Tracking is formu- 
lated as an image registration problem in the cylinder's 
texture map image. To solve the registration problem in the 
presence of lighting variation and head motion, the resid- 
ual error of registration is modeled as a linear combination 
of texture warping templates and orthogonal illumination 
templates. Fast and stable on-line tracking is then achieved 
via regularized, weighted least squares minimization of the 
registration error. The regularization term tends to limit 
potential ambiguities that arise in the warping and illumi- 
nation templates. Tracking does not require a precise ini- 
tial fit of the model; the system is initialized automatically 
using a simple 2D face detector. The only assumption is 
that the target is facing the camera in the first frame of the 
sequence. Experiments in tracking are reported. 

1   Introduction 
Three-dimensional head tracking is a crucial task for 

several applications of computer vision. Problems like face 
recognition, facial expression analysis, lip reading, etc., are 
more likely to be solved if a stabilized image is generated 
through a 3D head tracker. Determining the 3D head po- 
sition and orientation is also fundamental in the develop- 
ment of vision-driven user interfaces and, more generally, 
for head gesture recognition. Furthermore, head tracking 
can lead to the development of very low bitrate model- 
based video coders for video telephony, and so on. Most 
potential applications for head tracking require robustness 
to significant head motion, change in orientation, or scale. 
Moreover, they must work near video frame rates. Such 
requirements make the problem even more challenging. 

1.1   Previous Work 
In recent years several techniques have been proposed 

for 3D head motion and face tracking. Some of these tech- 
niques focus on 2D tracking (e.g., [6,10,16,22,23]), while 
others focus on 3D tracking or stabilization. 

Some methods for recovering 3D head parameters are 
based on tracking of salient points, features, or 2D image 
patches [1, 12]. Others use optic flow to constrain the mo- 
tion of a rigid or non-rigid 3D surface model [2,7]. In [14], 
a render-feedback loop was used to guide tracking for an 
image coding application. More complex physically-based 
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models for the face that include both skin and muscle dy- 
namics for facial motion were used in [8, 21]. Global head 
motion can also be tracked using a plane under perspective 
projection [4]. Recently [13] formulated the head tracking 
problem in terms of color image registration in the texture 
map of a 3D cylindrical model. Similarly Schödl, Haro and 
Essa [18] proposed a technique for 3D head tracking using 
a full head texture mapped polygonal model. 

Most of the above mentioned techniques are not able to 
track the face in presence of large rotations or changes in 
lighting conditions, and some require accurate initial fit of 
the model to the data. 
1.2   Approach 

The method we propose builds on and extends the work 
of [13, 18]. The head is modeled as a texture mapped 
cylinder. Tracking is formulated as an image registration 
problem in the cylinder's texture map image. Our en- 
hancements enable fast and stable on-line tracking of ex- 
tended sequences, despite noise and large variations in il- 
lumination. In particular, the image registration process is 
made more robust and less sensitive to changes in lighting 
through the use of an illumination basis and regularization. 

In this respect, this work is related to [ 10]. The main dif- 
ferences are: 1.) the use of a user-independent illumination 
basis, and 2.) the use of a regularization term that improves 
the tracking performance. A similar approach to estimating 
affine image motions and changes of view is proposed by 
[3]. This approach employed an interesting analogy with 
parametrized optical flow estimation; however, their itera- 
tive algorithm is unsuitable for real-time operation. 

As will become evident in the experiments, our pro- 
posed technique can improve the performance of a tracker 
based on the minimization of sum of squared differences 
(SSD) in presence of illumination changes. To achieve 
this goal we solve the registration problem by modeling 
the residual error in a way similar to the one proposed in 
[10]. The method employs an orthogonal illumination ba- 
sis that is precomputed off-line over a training set of face 
images collected under varying lighting conditions. In con- 
trast to the previous approach of [10], the illumination ba- 
sis is independent of the person to be tracked. Moreover, 
we propose the use of a regularizing term in the image reg- 
istration. This improves the long-term robustness and pre- 
cision of the SSD tracker considerably. 

2   Formulation ^ 
The formulation we propose is based on a three- 

dimensional textured polygonal model whose parameters 
are estimated through image registration in the texture 
map [13].  The model we use is a rigid cylinder that is 
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parametrized by its 3D position and orientation. During 
initialization, the model is positioned, rotated and scaled 
to fit the head in the image plane. The reference texture 
To is then obtained by projecting the initial frame of the 
sequence Io onto the visible part of the cylinder surface. 
An example mapping of the input frame onto the cylinder 
in the texture map is shown in Fig. 1. 

As a new frame is acquired it is possible to find a set 
of cylinder parameters such that the texture extracted from 
the incoming frame best matches the reference texture. 
In other words, the 3D head parameters are recovered by 
performing image registration in the model's texture map. 
Due to the rotations of the heads the visible part of the tex- 
ture can be shifted with respect to the reference texture. In 
the registration procedure we consider only the intersection 
of the two textures. 

As a precomputation, a collection of warping templates 
is computed by taking the difference between the reference 
texture To and the textures corresponding to warping of 
the input frame with slightly displaced cylinder parame- 
ters. Note that the motion templates used in [3, 10] are 
computed in the image plane. In our case the templates are 
computed in the texture map plane. A similar approach has 
been successfully used in [5, 9,19]. 

Once the warping templates have been computed, the 
tracking can start. Each new input frame I is warped into 
the texture map using the current parameter estimate a-. 
This yields a texture map T. The residual pattern (differ- 
ence between the reference texture and the warped image) 
is modeled as a linear combination of the warping tem- 
plates B = [bi,t>2,... jbtf] and illumination templates 
U = [ui, U2,..., UM] that model lighting effects. 

The optimal set of coefficients is estimated via least 
squares. These coefficients are linearly related to the in- 
crement Aa of the cylinder parameters, so we can compute 
the new cylinder parameters estimate. 

As we warp video into the texture plane, not all pixels 
have equal confidence. This is due to nonuniform density 
of pixels as they are mapped between the image and texture 
map planes. Note also that the texture map is 360° wide 
but only a 180° part of the cylinder is visible at any instant. 
Clearly, we should associate a zero confidence to the part 
of the texture corresponding to the back-facing portion of 
the surface. 

Due to possible coupling between the warping tem- 
plates and/or the illumination templates, the least squares 
solution may become ill-conditioned. As will be seen, this 
conditioning problem can be averted through the use of a 
regularization term. The complete formulation will now be 
discussed in detail. 

2.1   Image warps 
Each incoming image must be warped into the texture 

map. The warping function corresponds to the inverse tex- 
ture mapping of a cylinder in arbitrary 3D position. In what 
follows we will denote the warping function: 

where T is the texture corresponding to the frame I warped 
onto a cylinder with parameters a. The parameter vector a 
contains simply the position and orientation of the cylin- 
der. The use of linear combinations of these parameters 
leads to better conditioning of the problem[18] and is cur- 
rently under investigation. An example of input frame I 
with cylinder model and the corresponding texture map T 
are shown in Fig. l(a,b). 

T = r(I,a) (1) 

Figure 1: Example: (a) input frame I with the cylindrical model 
superimposed, (b) corresponding texture map T, and (c) confi- 
dence map W. 

Note that as we warp video into the texture plane, not 
all pixels have equal confidence. In fact parts of the tex- 
tures corresponding to the non-visible part of the cylinder 
contribute no pixels and therefore have zero confidence. 
Moreover due to nonuniform density of pixels as they are 
mapped between image and texture plane, different visible 
parts of the textures have different confidence. An approx- 
imate measure of the confidence can be derived in terms 
of the ratio of a triangle's area in the input image over the 
triangle's area in the texture map[13]. The associated con- 
fidence map will be denoted with W. The confidence map 
for the example is shown in Fig. 1(c). 

For notational convenience, all images are represented 
as long vectors obtained by lexicographic reordering of the 
corresponding matrices. 

2.2   Model initialization 
To start any registration based tracker, the model must 

be fit to the initial frame to compute the reference texture 
and the warping templates. This initialization can be ac- 
complished automatically using a 2D face detector [17] 
and assuming that the subject is facing the camera. The 
approximate 3D position of the cylinder is then computed 
assuming a unit radius. Note that assuming unit radius is 
not a limitation as in any case we estimate the relative mo- 
tion of the head. In other words people with a large head 
will be tracked as "farther from the camera" and people 
with a smaller head as closer. 

It is important to note using a simple model for the head 
makes it possible to reliably initialize the system. Simple 
models require the estimation of fewer parameters in au- 
tomatic placement schemes, and they are more robust to 
slight perturbations in parameters. A planar model [4] also 
offers these advantages; however, we have found that this 
model is not powerful enough to cope with the self occlu- 
sions generated by large rotations. On the other hand, we 



also experimented with a complex rigid head model gen- 
erated averaging the Cyberware scans of several people in 
known position. Using such a model we were not able to 
automatically initialize the model, since there are too many 
degrees of freedom. Furthermore, tracking performance 
was markedly less robust to perturbations in the model 
parameters. Even when fitting the detailed 3D model by 
hand, we were unable to gain improvement in the tracker 
precision or stability over a simple cylindrical model. 

Once we know the initial position of the model we can 
generate a collection of warping templates from the refer- 
ence texture[9, 13, 19]. Given a parameter displacement 
matrix Na = [ni,n2,... , no] we compute the warping 
templates matrix B = [bi, b2,..., \>K] with columns: 

bfc = To-r(I0,ao + nfc) (2) 

where I0 is the initial frame of the sequence, n* is the pa- 
rameter displacement vector for the kth difference vector 
(warping template), and a0 is the initial warping param- 
eter vector (i.e., the initial position and orientation of the 
cylinder). 

In practice, four difference vectors per model parameter 
are sufficient. For the kth parameter, these four difference 
images correspond with the difference patterns that result 
by changing that parameter by ±<5fc and ±25k- The values 
of the 8k can be easily determined such that all the differ- 
ence images have the same energy as shown in [13]. Note 
that the need for using ±6k and ±26k is due to the fact that 
the warping function is only locally linear in a. Experi- 
mental results confirmed this intuition. An analysis of the 
extension of the region of linearity in a similar problem has 
been conducted in [5]. 

Fig. 2 shows a few difference images (warping tem- 
plates) obtained for a typical initial image. 

(b) (d) (e) 

Figure 2: Example of warping templates corresponding to trans- 
lations along the (x, y, z) axes (a,b,c) and Euler rotations (d,e,f). 
Note the similarity between the templates for horizontal transla- 
tion (a) and vertical rotation (e). Note also the similarity between 
vertical translation (b) and horizontal rotation (d). Only that part 
of the template with nonzero confidence is shown. 

2.3   Illumination 
Tracking based on the minimization of the sum of 

squared differences between the incoming texture and a 
reference texture is inherently sensitive to changes in il- 
lumination. Better results can be achieved by minimiz- 
ing the difference between the incoming texture and an 
illumination-adjusted version of the reference texture. If 
we assume a Lambertian surface in the absence of self- 
shadowing, then it has been shown that all the images of 
the same surface under different lighting conditions lie in a 

three-dimensional linear subspace of the space of all pos- 
sible images of the object[20]. In this application, none 
of these conditions is met. Moreover, the nonlinear image 
warping from image plane to texture plane distorts the lin- 
earity of the three-dimensional subspace. Nevertheless, we 
can still use a linear model as an approximation [10, 11]: 

T - T0 w Uc. (3) 

The columns of the matrix U constitute the illumination 
templates. In [10], these templates are obtained by taking 
the singular value decomposition (S VD) of a set of training 
images of the target subject taken under different lighting 
conditions. An additional training vector of ones is added 
to the training set to account for global brightness changes. 
The main problem of this approach is that the illumination 
templates are subject-dependent. 

In our system, we generate a user-independent set of 
illumination templates. This is done by taking the SVD 
of a large set of textures corresponding to faces of differ- 
ent subjects, taken under varying lighting conditions. The 
SVD was computed after subtracting the average texture 
from each sample texture. The training set of faces we 
used was previously aligned and masked as explained in 
[15]. In practice, we found that ten illumination templates 
are sufficient to account for illumination changes. 

Note that the illumination basis vectors are low- 
frequency images. Thus any mis-alignment between the 
illumination basis and the reference texture is negligible. 
The first few illumination basis vectors are shown in Fig. 3. 
Fig. 4 shows a reference image and the same image after 
the lighting correction (in practice T0 and TQ + Uc). 

Figure 3: The first six illumination templates before masking. 
Only the part of the texture with nonzero confidence is shown. n 

(b) (c) (a)l 

Figure 4: Example of the lighting correction on the reference 
texture. The reference texture (a). Reference texture after the 
lighting correction (b) to match incoming texture (c). 

2.4   Combined Parametrization 
Following the line of [3, 10], we then model the resid- 

ual images computed by taking the difference between the 
incoming texture and the reference texture as a linear com- 
bination of illumination templates {UI,U2,...UM} and 
warping templates {bi, b2,... b^}: 

T - T0 » Bq + Uc (4) 



In our experience this is a reasonable approximation for 
low-energy residual textures.   A multiscale approach is 
used so that the system can handle higher energy residual 
textures. 
2.5   Tracking 

To find the warping parameters a, we first find c and q 
by solving the following weighted least squares problem: 

W(T - T0) «a W(Bq + Uc) (5) 

where W = diag[Tw] is the weighting matrix, containing 
the confidence weights mentioned earlier. 

If we define: 

R = T-T0;x = 

we can write the solution as: 

c 
q 

;M = [U|B]; (6) 

x   =   argmin||R-Mx| 
X 

=   KR 

w (7) 

(8) 

where K = [MTWTWM]"1MTWTW and ||x||w = 
xrWTWx is a weighted L-2 norm. If we are interested 
only in the increment of the warping parameter Aa we can 
compute only the q part of x. Finally: 

a = a   + Naq. (9) 

Note that this computation requires only a few matrix mul- 
tiplications and the inversion of a relatively small matrix. 
No iterative optimization [3] is involved in the process. 
This is why our method is fast. 
2.6   Regularization 

Independently of the weighting matrix W we observed 
that the matrix K is sometimes close to singular. This is 
a sort of generalized aperture problem and is due mainly 
to the intrinsic ambiguity between small horizontal transla- 
tion and vertical rotation, and between small vertical trans- 
lation and horizontal rotation. Moreover, we found that a 
coupling exists between some of the illumination templates 
and the warping templates. 

Fig. 5 shows the matrix MTM for a typical sequence. 
Each square in the figure corresponds to an entry in the ma- 
trix. Bright values correspond to large values in the matrix, 
dark squares have small values in the matrix. If the system 
were perfectly decoupled, then all off-diagonal elements 
would be dark. In general, brighter off-diagonal elements 
indicate a coupling between parameters. 

By looking at the figure, it is possible to see the cou- 
pling that can cause ill-conditioning. The top-left part of 
the matrix is diagonal because it corresponds with the or- 
thogonal illumination basis vectors. This is not true for 
bottom-right block of the matrix. This block of the ma- 
trix corresponds with the warping basis images. Note that 
the coupling between warping parameters and appareance 
parameters is weaker than the coupling within the warp- 
ing parameter space. This last kind of coupling could be 
reduced with a different warping function parametrization. 

Figure 5: Example of matrix MTM. 

Such couplings can lead to instability or ambiguity in 
the solutions for tracking. To alleviate this problem, we 
regularize our system. We define the regularizer by adding 
a penalty term to the image energy shown in the previous 
section, and then minimize with respect to c and q: 

E   =    ||(T-To)-(Bq + Uc)||w + 7l[c
Tnac] 

+72 [a" + Naq]Tntu[a
_ + Naq] (10) 

The diagonal matrix fia is the penalty term associated 
with the appearance parameter c, and tiw is the penalty 
associated with the warping parameters a. 

We can define: 

P = 
0 

;N = 
I     0 
0   Na 

Ct = o    ^nw 

(ii) 

(12) 

and then rewrite the energy as: 

E = ||R - Mx\\w + 7[p + Nx]Tfi[p + Nx].     (13) 

By taking the gradient of the energy with respect to x, and 
equating it to zero we get: 

x = KR + Qp, (14) 

where K = [MTWrWM+7NTfiN]-xMrWTWand 
Q = 7[MTWTWM + 7NTnN]-1NTn. 

As before, if we are interested only in the warping pa- 
rameter estimate, then we can save computation time by 
solving only for the q part of x. We can then find Aa. 

The choice of a diagonal regularizer implicitly assumes 
that the subvectors c and q are independent. In prac- 
tice this is not the case. However, our experiments con- 
sistently proved that the performance of the regularized 
tracker is considerably superior with respect to the unreg- 
ularized one. 

The matrices fla and Qw were chosen for the following 
reasons. Recall that the appearance basis U is an eigen- 
basis for the texture space. If tia is diagonal and with 
elements equal to the inverse of the corresponding eigen- 
values, then the penalty term cTfiac is proportional to the 
distance in feature space[\5\. This term thus prevents an 



artificially large illumination term from dominating, and 
misleading the tracker. 

The diagonal matrix Qw is the penalty associated with 
the warping parameters. We assume that the parameters 
are independently Gaussian distributed around the initial 
position . We can then choose tiw to be diagonal, with di- 
agonal terms equal to the inverse of the expected variance 
for each parameter. In this way we prevent the parameters 
from exploding when the track is lost. Our experience has 
shown that this term generally makes it possible to swiftly 
recover if the track is lost. We defined the standard devia- 
tion for each parameter as a quarter of the range that keeps 
the model entirely visible (within the window). 

Note that this statistical model of the head motion is 
particularly suited for video taken from a fixed camera (for 
example a camera on the top of the computer monitor). In 
a more general case (for example to track heads in movies) 
a random walk model[l, 12] would probably be more ef- 
fective. Furthermore, the assumption of independence of 
the parameters could be removed and the full non-diagonal 
6x6 covariance matrix estimated from example sequences. 

3 Implementation details 
To allow for larger displacements in the image plane 

we implemented our system using a multiscale frame- 
work. The warping parameters are initially estimated at 
the higher level of a Gaussian pyramid and the parameters 
are propagated to the lower level. In our implementation 
we found that a three level pyramid was sufficient. 

We represented the cylindrical model as a set of texture 
mapped triangles in 3D space. When the cylinder is super- 
imposed onto the input video frame, each triangle in image 
plane maps the underlying pixels of the input frame to the 
corresponding triangle in texture map. The confidence map 
is generated using a standard triangular area fill algorithm. 
The map is first initialized to zero. Then each visible trian- 
gle is rendered into the map with a fill value corresponding 
to the confidence level. This approach allows the use of 
standard graphics hardware to accomplish the task. 

The illumination basis has been computed from a MIT 
database[15] of 1,000 aligned frontal view of faces under 
varying lighting conditions. Since all the faces are aligned, 
we had to determine by hand the position of the cylinder 
only once and then used the same warping parameters to 
compute the texture corresponding to each face. Finally, 
the average texture was computed and subtracted from all 
the textures before computing the SVD. 

4 Experimental results 
The system has been extensively tested using twenty se- 

quences. These specific sequences were selected because 
they caused the previous SSD [13] to fail (tracking was 
lost or diverged). Ten of the sequences were captured via 
a low quality SGI 02 camera positioned atop the computer 
monitor in a poorly illuminated environment with domi- 
nant directional lights. The other ten sequences were cap- 
tured with a Sony consumer camera on a tripod in a well- 
illuminated set. The images in the video sequences had a 

pixel resolution of 320 x 240. In each sequence, the head 
occupied between 20 and 50 percent of the total frame area. 

The sequences were selected in such a way that a wide 
variety of common head movements were included in the 
test set. Head motions present in the test sets include sig- 
nificant out of plane rotations (up to about 60°). A few 
of them were of a people telling stories using American 
Sign Language (ASL). These sequences include very rapid 
head motion and frequent occlusions of the face with the 
hand(s). Each of the twenty video sequences was between 
8 and 15 seconds in duration. 

A number of different experiments were conducted. 
The first set of experiments was intended to evaluate the 
improvements gained in adding the illumination basis to 
the SSD tracker described in [13]. Note that to test the im- 
provement gained by modeling illumination, the regular- 
ization term was omitted in this first experiment. All test 
sequences were tracked using both the old and new formu- 
lations, and then tracking performance compared. 

For both classes of sequences the new tracker behaved 
consistently better. However, as expected, the improve- 
ment over the standard SSD tracker was much bigger for 
the first class of sequences (the ones with prominent direc- 
tional light). In particular for the first class of sequences, 
the introduction of the lighting correction term greatly im- 
proved the precision of head motion estimate throughout 
tracking. The new formulation also tended to be more sta- 
ble, allowing accurate tracking over longer sequences. It 
achieved accurate tracking over the full sequences in many 
cases that previously diverged in the previous SSD tracker 
formulation [13]. 

Only in five out of twenty sequences was the track lost 
at the same point in the sequence in both the old and new 
tracking formulations. These cases were characterized by 
very fast head motion or extreme rotation. One example is 
shown in Fig. 6. In the other cases, the new formulation 
was often able to reliably track the target during the whole 
sequence. 

The second experiment was intended to test the im- 
provement gained by incorporating both the illumination 
and regularization terms in the tracker. The stability further 
increased using the regularization energy term. The system 
successfully tracked through the points in all twenty video 
sequences where the previous SSD tracker diverged. With 
the added regularization term, tracking was stable enough 
to allow stable and accurate tracking over the full 8-15 
sec. sequence in 17 out of 20 test cases. 

Table 1 shows the average results for the experiments 
conducted. In particular the table shows averages of length 
of the sequences, number of frames that were tracked be- 
fore losing the track, and residual error for the three types 
of tracker analyzed. The averages are taken over the two 
classes of sequences. Note that the gain in performance 
due to the use of the illumination templates is much smaller 
for sequences in class 2 that were taken in a uniformly illu- 
minated environment. The positive effect of the regularizer 
was strong in both classes of sequences. 



# of frames tracked Residual Error 
Class Ave. Length Tl T2 T3 Tl T2 T3 

1 
2 

343 
320 

102 
182 

207 
190 

307 
297 

82 
375 

49 
324 

48 
299 

Table 1: Cumulative results of experiments. Tl is the standard 
SSD tracker, T2 is the tracker using illumination templates and 
T3 is the regularized version of T2. 

The top row of Fig. 6(a) shows a few example frames 
of a typical sequence taken from the SGI 02 camera. The 
subsequent rows of Fig. 6 show tracking results for: (b) 
the old SSD tracker, (c) SSD with additional illumination 
term, and (d) SSD with both illumination and regulariza- 
tion term. This is an example of one of the few cases where 
the tracker with the lighting term lost the track at almost the 
same point in the sequence as the older SSD formulation. 
In any case, the residual error was much lower, and then 
the precision of the tracking much better. The regularized 
tracker was able to track all 450 frames of the sequence. 

Fig. 7 shows a few frames from a long sequence that 
was collected with the Sony camera. Ground truth for 
this sequence was simulatenously collected via a "Flock 
of Birds" 3D tracker. The transmitter was attached to the 
subject's head. Tracking parameters were recovered using 
the new tracking formulation that includes lighting correc- 
tion and regularization terms. The graphs show the esti- 
mated rotation and translation parameters during tracking 
compared to ground truth. 

The tracker is extremely fast. We expect to track video 
at near frame rate using the technique proposed in this pa- 
per. The demo version we implemented using the openGL 
library and hardware texture mapping runs on an SGI 02 
R5000 at about 4Hz reading the input stream from a movie 
file. This figure is for unoptimized C++ code, and most of 
the time is spent in reading/uncompressing movie files, and 
graphical display information that is not essential to the 
tracking system. By our calculations, if we subtract this 
non-essential computation and I/O overhead, our tracker 
could easily run at frame rates. We are therefore confident 
that when sending the video stream directly into texture 
map memory, a real-time implementation will be possible. 

5    Conclusions 
We proposed a fast, stable and accurate technique for 

3D head tracking in presence of varying lighting condi- 
tions. We presented experimental results that show how 
our technique greatly improves the standard SSD tracking 
without the need of a subject-dependent illumination ba- 
sis or the use of iterative techniques. Our method is accu- 
rate and stable enough that the estimated pose and orienta- 
tion of the head is suitable for application of head gesture 
recognition and visual user interfaces. 

The texture map provides a stabilized view of the face 
that can be used for facial expression recognition, and 
other applications requiring that the position of the head 
is frontal view and almost static. Moreover, when we com- 
pute the full x vector we have also a very compact repre- 
sentation of the head that could be used for model-based 

very low bitrate video coding. 
In the future we plan to develop a version of our method 

that employs robust cost functions. We suspect that this 
could further improve the precision and stability of the 
tracker in presence of occlusions. A real-time implementa- 
tion of the current formulation is also under development. 
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Figure 6: Example input video frames (a) taken from a test sequence that caused some of the trackers to diverge. The resulting tracking 
for each of the three trackers tested is shown below each input image taken from the sequence: (b) head tracking using standard SSD 
tracking, (c) SSD with lighting correction, and (d) SSD with lighting correction and regularization. The frames reported are 0, 40, 80, 
120,160, and 200 (left to right). The Residual error for the different trackers is shown in (e) and is indicated respectively with Tl, T2 and 
T3. 

Figure 7: Frames taken from test sequence in which ground truth was collected via a 3D "Flock of Birds" sensor. The graph shows 
estimated translations and rotations compared with ground truth. The measures are in inches and degree, the solid line is the ground truth. 
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